Almost Gorenstein determinantal rings of symmetric matrices

Naoki Endo

School of Political Science and Economics, Meiji University

Based on the work jointly with

Ela Celikbas, Jai Laxmi, and Jerzy Weyman

MSJ Spring Meeting 2025

March 21, 2025

Introduction

Determinantal rings

- $m, n \ge 2$ integers
- $X = [X_{ij}]$ an $m \times n$ matrix of indeterminates over an infinite field k
- $S = k[X] = k[X_{ij} \mid 1 \le i \le m, 1 \le j \le n]$
- I_t(X) the ideal of S generated by t × t-minors of X, where 2 ≤ t ≤ min{m, n}
 R = S/I_t(X)
- *R* is CM with dim R = mn (m (t 1))(n (t 1)) ([Hochster-Eagon, 1970])
- R is Gorenstein $\iff m = n$ ([Svanes, 1974])

Theorem 1 (Taniguchi, 2018)

Let $\mathfrak{m} = R_+$ be the graded maximal ideal of R. Then TFAE.

- (1) R is an almost Gorenstein graded (AGG) ring.
- (2) R_m is an almost Gorenstein local (AGL) ring.
- (3) Either m = n, or $m \neq n$ and $2 = t = \min\{m, n\}$.

- R is AGG \implies $R_{\mathfrak{m}}$ is AGL, and the converse is **NOT** true in general.
- The converse holds when $R = S/I_t(X)$ or R = k[H] ([E-Matsuoka, 2024]).

Question 2 (Goto)

Under what conditions are the determinantal rings of symmetric matrices AG?

Determinantal rings of symmetric matrices

- $n \ge 2$ integer
- $X = [X_{ij}]$ an $n \times n$ symmetric matrix of indeterminates over an infinite field k
- $S = k[X] = k[X_{ij} | 1 \le i, j \le n]$
- $I_{t+1}(X)$ the ideal of S generated by $(t+1) \times (t+1)$ -minors of X, where $1 \le t \le n$

• $R = S/I_{t+1}(X)$

- *R* is CM with dim $R = nt \frac{1}{2}t(t-1)$ ([Kutz, 1974])
- R is Gorenstein $\iff n-t$ is odd ([Goto, 1979])

Main Theorem

Main Theorem (Celikbas-E-Laxmi-Weyman, 2022)

Let $\mathfrak{m} = R_+$ be the graded maximal ideal of R. Then TFAE.

- (1) R is an AGG ring.
- (2) $R_{\mathfrak{m}}$ is an AGL ring.
- (3) Either n t is odd, or n = 3 and t = 1.

Consider

- V an $n \times t$ matrix of indeterminates over k with ch k = 0
- A = k[V]
- G = O(t, k) the orthogonal group.

Assume that G acts on A as k-automorphisms by taking V onto VH^{-1} for $H \in G$.

Then A^G is generated by the entries of the $n \times n$ symmetric matrix $Y = VV^T$ and the ideal of relations on Y is generated by the $(t + 1) \times (t + 1)$ minors of Y.

Corollary 3

$$A^G$$
 is $AGG \iff (A^G)_{\mathfrak{m}}$ is $AGL \iff$ either $n-t$ is odd, or $n=3$ and $t=1$.

Proof of Main Theorem $(2) \Rightarrow (3)$

May assume ch k = 0. Set $A = R_m$ and n = mA. Choose an exact sequence

$$0
ightarrow A rac{arphi}{
ightarrow} \mathsf{K}_A
ightarrow C
ightarrow 0$$

s.t. $\mu_A(C) = e_n^0(C)$. May assume n - t is even, i.e., A is not Gorenstein. Then, because $\varphi(1) \notin \mathfrak{n} K_A$, we get $\mu_A(C) = r(A) - 1$ and

 $0
ightarrow \mathfrak{n} arphi(1)
ightarrow \mathfrak{n} \, \mathsf{K}_A
ightarrow \mathfrak{n} \, \mathsf{C}
ightarrow 0.$

By setting $d = \dim A$, we have

$$\mu_A(\mathfrak{n} \mathsf{K}_A) \leq \mu_A(\mathfrak{n}) + \mu_A(\mathfrak{n} C) \leq \frac{n(n+1)}{2} + (d-1)(r(A)-1)$$

where the second follows from $\mathfrak{n}C = (f_1, f_2, \dots, f_{d-1})C$ for $\exists f_i \in \mathfrak{n}$.

By taking the S-dual of a graded minimal S-free resolution

$$0 \rightarrow \boldsymbol{F}_{\ell} \rightarrow \boldsymbol{F}_{\ell-1} \rightarrow \cdots \rightarrow \boldsymbol{F}_{0} \rightarrow \boldsymbol{R} \rightarrow \boldsymbol{0},$$

we get the presentation of K_R . Hence

 $\mu_R(\mathfrak{m}) \cdot \operatorname{rank} F_{\ell} - \operatorname{rank} F_{\ell-1} \leq \mu_R(\mathfrak{m} K_R) = \mu_A(\mathfrak{n} K_A).$

Let X^s be the space of $n \times n$ symmetric matrices over k. Then

$$k[X^{s}] \cong k[\phi_{i,j} \mid 1 \le i \le j \le n]$$

where $\phi_{i,j}$ denotes the (i,j)-th coordinate function on X^s . The subvariety

$$Y_t^s = \{\phi \in X^s \mid \mathsf{rank} \ \phi \le t\}$$

can be identified with the set of symmetric matrices whose minors of size t + 1 vanish. Hence

$$k[Y_t^s] \cong k[\phi_{i,j} \mid 1 \le i \le j \le n]/J_{t+1}$$

where J_{t+1} denotes the ideal generated by $(t+1) \times (t+1)$ minors of $\Phi = [\phi_{i,j}]$.

Thus, in order to compute the ranks of the resolution of $R = S/I_{t+1}(X)$, it comes down to studying the resolution of $k[Y_t^s]$.

Using the Schur modules, we can compute

$$\operatorname{rank} F_{\ell-1} = n \binom{n}{t+1} - \binom{n}{t+2}$$
 and $\operatorname{rank} F_{\ell} = \binom{n}{t}$.

This implies n = 3 and t = 1, as desired.

Thank you for your attention.