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Introduction

Determinantal rings

m, n ≥ 2 integers

X = [Xij ] an m × n matrix of indeterminates over an infinite field k

S = k[X ] = k[Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n]

It(X ) the ideal of S generated by t × t-minors of X , where 2 ≤ t ≤ min{m, n}
R = S/It(X )

R is CM with dimR = mn − (m − (t − 1))(n − (t − 1)) ([Hochster-Eagon, 1970])

R is Gorenstein ⇐⇒ m = n ([Svanes, 1974])

Theorem 1 (Taniguchi, 2018)

Let m = R+ be the graded maximal ideal of R. Then TFAE.

(1) R is an almost Gorenstein graded (AGG) ring.

(2) Rm is an almost Gorenstein local (AGL) ring.

(3) Either m = n, or m ̸= n and 2 = t = min{m, n}.
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R is AGG =⇒ Rm is AGL, and the converse is NOT true in general.

The converse holds when R = S/It(X ) or R = k[H] ([E-Matsuoka, 2024]).

Question 2 (Goto)

Under what conditions are the determinantal rings of symmetric matrices AG?

Determinantal rings of symmetric matrices

n ≥ 2 integer

X = [Xij ] an n × n symmetric matrix of indeterminates over an infinite field k

S = k[X ] = k[Xij | 1 ≤ i , j ≤ n]

It+1(X ) the ideal of S generated by (t + 1)× (t + 1)-minors of X , where 1 ≤ t ≤ n

R = S/It+1(X )

R is CM with dimR = nt − 1

2
t(t − 1) ([Kutz, 1974])

R is Gorenstein ⇐⇒ n − t is odd ([Goto, 1979])
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Main Theorem

Main Theorem (Celikbas-E-Laxmi-Weyman, 2022)

Let m = R+ be the graded maximal ideal of R. Then TFAE.

(1) R is an AGG ring.

(2) Rm is an AGL ring.

(3) Either n − t is odd, or n = 3 and t = 1.

Consider

V an n × t matrix of indeterminates over k with ch k = 0

A = k[V ]

G = O(t, k) the orthogonal group.

Assume that G acts on A as k-automorphisms by taking V onto VH−1 for H ∈ G .

Then AG is generated by the entries of the n × n symmetric matrix Y = VV T and the
ideal of relations on Y is generated by the (t + 1)× (t + 1) minors of Y .

Corollary 3

AG is AGG ⇐⇒ (AG )m is AGL ⇐⇒ either n − t is odd, or n = 3 and t = 1.
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Proof of Main Theorem (2) ⇒ (3)

May assume ch k = 0. Set A = Rm and n = mA. Choose an exact sequence

0 → A
φ−→ KA → C → 0

s.t. µA(C) = e0n(C). May assume n − t is even, i.e., A is not Gorenstein. Then, because
φ(1) ̸∈ nKA, we get µA(C) = r(A)− 1 and

0 → nφ(1) → nKA → nC → 0.

By setting d = dimA, we have

µA(nKA) ≤ µA(n) + µA(nC) ≤ n(n + 1)

2
+ (d − 1)(r(A)− 1)

where the second follows from nC = (f1, f2, . . . , fd−1)C for ∃ fi ∈ n.

By taking the S-dual of a graded minimal S-free resolution

0 → Fℓ → Fℓ−1 → · · · → F0 → R → 0,

we get the presentation of KR . Hence

µR(m) · rankFℓ − rankFℓ−1 ≤ µR(mKR) = µA(nKA).
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Let X s be the space of n × n symmetric matrices over k. Then

k[X s ] ∼= k[ϕi, j | 1 ≤ i ≤ j ≤ n]

where ϕi, j denotes the (i , j)-th coordinate function on X s . The subvariety

Y s
t = {ϕ ∈ X s | rank ϕ ≤ t}

can be identified with the set of symmetric matrices whose minors of size t + 1 vanish.

Hence
k[Y s

t ] ∼= k[ϕi, j | 1 ≤ i ≤ j ≤ n]/Jt+1

where Jt+1 denotes the ideal generated by (t + 1)× (t + 1) minors of Φ = [ϕi, j ].

Thus, in order to compute the ranks of the resolution of R = S/It+1(X ), it comes down
to studying the resolution of k[Y s

t ].

Using the Schur modules, we can compute

rankFℓ−1 = n

(
n

t + 1

)
−

(
n

t + 2

)
and rankFℓ =

(
n

t

)
.

This implies n = 3 and t = 1, as desired.
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Thank you for your attention.
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